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LETTER TO THE EDITOR 

Asymptotic form of the spectral dimension of the Sierpinski 
gasket type of fractals 

Z Borjan, S ElezoviC, M KneieviC and S MiloSeviC 
Department of Physics and Meteorology, Faculty of Natural and Mathematical Sciences, 
PO Box 550, 11001 Belgrade, Yugoslavia 

Received 16 March 1987, in final form 18 May 1987 

Abstract. We have studied the spectral dimension d of an infinite class of fractals. The 
first member ( b  = 2) of the class is the two-dimensional Sierpinski gasket, while the last 
member ( b  = m) appears to be a wedge of the ordinary triangular lattice. By studJing the 
electric resistance of the fractals we have been able to calculate exact values of d for the 
first 200 members of the class. An analysis of the obtained data reveals that for large b 
',he spectral dimension should approach the upper limit of 2 according to the formula 
d = 2 -constant (In b)@, where p is not larger than one. This result implies, among other 
things, that the scaling exponents of the resistivity and diffusion constant should logarithmi- 
cally vanish at the fractal-lattice crossover. 

Recently, there has been a good deal of interest in the quantities which determine the 
dynamical properties of fractal structures, such as percolation clusters. Alexander and 
Orbach (1982) were the first to point out that at least three dimensions are required 
to describe the linear problems (classical diffusion, spectrum of low-energy excitations 
and electrical conductivity) on fractals (see, for instance, Alexander 1983). The first 
two dimensions, i.e. the embedding (Euclidean) dimension d and the fractal dimension 
d, determine the spatial and geometrical features of fractals, whereas the third one, 
the so-called spectral dimension L?, controls the relevant physical properties. Thus, for 
instance, the density of states is given by the power law p ( o )  - od-' for low frequencies 
w (Dhar 1977, Alexander and Orbach 1982, Rammal and Toulouse 1983, Gefen et a1 
1983). Since there are many other dynamical quantities that can be directly related to 
2, it should be useful to attain a complete knowledge of d' for certain classes of fractals. 

In this letter we study the spectral dimension of an infinite class of fractals, whose 
first member (labelled by b = 2) is the two-dimensional Sierpinski gasket, while its last 
member ( b  = a) appears to be a wedge of the ordinary triangular lattice. The spectral 
dimensions for the first fifteen members of the class have been previously calculated 
by Hilfer and Blumen (1984) using the master equation approach. However, the known 
set of values of d' has not been sufficient to deduce an asymptotic behaviour of L? when 
b + a ,  that is to say the behaviour of L? at the fractal-lattice crossover. Here we 
examine the electric DC conductivity of the fractals and demonstrate that by this 
approach one can find L? for a much larger set of members of the class studied. In 
particular, we have calculated L? for all values of b up to 200, and on the basis of the 
obtained data we have been able to infer an asymptotic form of the function d ( b ) .  

The spectral dimension L? of a fractal can be related to the exponent of the power 
law RL - L' which describes the fractal electric resistance R ,  between two points that 
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lie the scale length L apart (see, for instance, Rammal et a1 1984, Given and Mandelbrot 
1983). The relation is of the form 

2 = 2 d / ( d + 5 ) .  (1) 

In order to calculate 5 for the class of fractals under study we recall that each member 
of the class can be obtained from a particular generator G( b, 2), which appears to be 
an equilateral triangle that contains b2 identical smaller triangles of unit side length 
(Hilfer and Blumen 1984). Since at the nth stage of growing of a fractal (see figure 1 
of ElezoviC et a1 (1987)) the generator is enlarged by b" and filled with the stage ( n  - 1) 
structure, it follows that the fractal resistance Rnb and R(n- l ) )b  are related by 

Rnb = b i R ( n - l ) b  (2) 

Rb = biRl (3) 

which reduces to 

where Rb is the resistance of the generator and RI  is the resistance of a unit triangle. 
If each bond of each unit triangle carries a resistor with a unit resistance, then RI =$  
and relation (3) implies 

5 = hl (~Rb) / ln  b. (4) 

Accordingly, finding the exponent 5, and consequently finding the spectral dimension 
2, is converted, due to the fractal self-similarity, to an evaluation of the generator 
resistance Rb. 

One can apply various techniques to evaluate the electrical resistance Rb. We have 
found that the successive application of the star-triangle transformation is the most 
effective (see figure 1). This approach enables us to reduce every generator G(b, 2 ) ,  
conceived as a complex electrical circuit, to a simpler circuit represented by G( b - 1,2), 
and by further reductions we can finally reach a circuit in the shape of a unit triangle. 
The corresponding iterative transformations of the resistances can be easily found, 
and by applying them one can find Rb in the form of rational numbers, at least for 
small b. Thus for 2 C b C 5 we regained numbers found by Given and Mandelbrot 
(1983) (see their table 1 and note that their R is just our ratio Rb/ R,),  and for b = 6 
we found that R6 = 19 015 038/9294 075. However, for larger b the application of the 
resistance transformations, although straightforward, becomes strenuous, and, for this 
reason, we have computerised the whole procedure. In table 1 we display a representa- 
tive set of the values of 2 obtained, via formulae (1) and (4), from the computed 
values of Rb. One can infer from table 1 that the values of 2 less than two increase 
very slowly when b increases. 

Figure 1. Reduction of the b = 3 fractal generator according to the star-triangle transforma- 
tion. It is assumed that at the beginning each bond of each unit triangle of the generator 
carries a resistor with a unit resistance. An electric DC current is sent into the vertex P 
and taken out of the vertex Q. 
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Table 1. A sample set of values of the spectral dimension for the Sierpinski gasket type 
of fractals. 

b d' b ci 

10 
20 
30 
40 
50 
60 
70 
80 
90 

100 

1.4990 
1.5424 
1.5644 
1.5787 
1.5891 
1.5972 
1.6038 
1.6093 
1.6140 
1.6181 

110 
120 
130 
140 
150 
160 
170 
180 
190 
200 

1.6217 
1.6250 
1.6279 
1.6306 
1.6330 
1.6352 
1.6373 
1.6392 
1.641 1 
1.6428 

It has been observed (Rammal and Toulouse 1983) and argued (Hattori et al 1986) 
that, for finitely ramified fractals (including those which are embedded in the Euclidean 
spaces with d > 2), d' cannot be larger than two. The spectral dimension of the Sierpinski 
type of fractals, for fixed 6, approaches the upper limit of two when d + 00. As a 
matter of fact, one can verify that the known closed-form expressions for the spectral 
dimension, found for 6 = 2 (Rammal and Toulouse 1983) and 6 = 3 (Hilfer and Blumen 
1984), imply the following asymptotic law: 

d = 2 - c / d  l n d  d+co 

where c is equal to 4 and 2 for 6 = 2 and 6 = 3, respectively. In the opposite case, that 
is to say in the case of fractals with fixed d and arbitrary 6, we may expect that their 
spectral dimensions approach the upper limit of two when their fractal dimensions d 
approach the embedding dimension d. From the general formula (Hilfer and Blumen 
1984) 

d = l n (  6 + d - l  ) ( ln6) - '  

it follows that d +  d when 6 +CO. Therefore, in the case under study, we can accept 
that table 1 represents a subsequence of an infinite sequence of numbers which tend 
to two and try to find an asymptotic form of the general term of the sequence when 6 + a. 

Proceeding from ( 5 )  we could assume an analogous asymptotic form in the case 
of fixed d :  

d - 2 - c l b l n  6 6 + a .  (7 )  

However, such a form would lead to a paradoxical result appearing, in that for some 
very large 6 the corresponding fractals may have d'> d as d' given by (7) would be 
closer to two than the fractal dimension which is, in accordance with ( 6 ) ,  given by 
6- 2 -In 2/ln 6 + m. The inequality d'> d would be paradoxical since it would, in 
conjunction with the formula t9 = 2 ( 6 / d  - 1) (see, for instance, Alexander 1983), imply 
that the scaling exponent 0 of the coefficient of diffusion could be negative, which 
would in turn bring about a superanomalous diffusion. For the same reason, any 
power-law correction for d' should not be acceptable. The latter conclusion can be 
corroborated by a numerical analysis. 
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We have performed a least-squares fitting of the whole set ( 2 s  b s 2 0 0 )  of our 
exact data to the power-law asymptotic formula 

d'= 2 - A /  b" (8) 

and to the logarithmic asymptotic formula 

d = 2 - B / ( l n  b ) p  (9) 

where A, a, B and p are the fitting constants. Surprisingly, we have found that for a 
suitable choice of constants both formulae reproduce the exact data seemingly well. 
However, grouping our data for larger b into successive intervals of 21 and performing 
independent fitting for each interval, we have found that the mean-square deviations 
D of the power-law asymptotic formula are persistently larger than the corresponding 
deviations of the logarithmic asymptotic formula (see figure 2 ) .  In addition, the 
behaviour of the fitting constants is indicative of the incompatibility of the power law 
(8). In fact, table 2 reveals that values of a are small and monotonically decreasing, 
which reflects the fact that the power-law correction should eventually be extremely 
weak. This necessity and the fact that values of the exponent /3 increase, together with 
the finding that a similar situation occurs if one performs numerical analysis of the 
first 200 data for the fractal dimension, lead us to conclude that the asymptotic behaviour 
of the spectral dimension should be of the form 

d' = 2 - B/(ln b)@ b + a  (10) 
where /3 S 1. If it turns out that /3 = 1, then the constant B cannot be smaller than 
In 2 ,  for B <In 2 would bring about the incorrect inequality d < d' for some large b. 

200 180 160 140 120 100 80 
b ,  

Figure2. Plot of the mean-square deviations D of the spectral dimension d' evaluated 
according Jo equations (8) and (9), with the constants given in table 2, from the exact 
values of d. The upper bounds of the intervals given in table 2 are designated as b,. The 
full circles correspond to the logarithmic asymptotic formula, whereas the open circles 
correspond to the power-law asymptotic formula (the full and broken curves serve as a 
guide to the eye). The insert represents the last four data in a frame with the enlarged 
vertical scale. 
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Tsble2. Values of the constants which furnish the best fits of the calculated spectral 
dimensions (1) to equations (8) and (9). 

b A a B P 

40GbS-60 
6 0 s  b s 80 
80s b s  100 

100s b s 1 2 0  
120s  b s  140 
140s  b s  160 
160s b S 1 8 0  
180 S b S 200 

0.633 56 
0.620 96 
0.611 71 
0.604 45 
0.598 49 
0.593 43 
0.589 05 
0.585 25 

0.11065 
0.105 73 
0.102 29 
0.099 70 
0.097 63 
0.095 91 
0.094 45 
0.093 20 

0.739 26 
0.757 62 
0.770 70 
0.780 79 
0.789 05 
0.795 91 
0.801 77 
0.807 11 

0.430 62 
0.448 08 
0.459 69 
0.468 22 
0.474 94 
0.480 36 
0.484 88 
0.488 91 

Accepting this conclusion one may ponder on the second-order term in (10). We 
mention here that we have tried to add to the right-hand side of equation (10) either 
constant/ b In b or constant/ b and found that both possibilities can reproduce exact 
data plausibly well (the same happens if we try constant/ b”’ instead). Thus we cannot 
see any reason to suggest anything more than (10). Indeed, the result (10) alone seems 
to be interesting and stimulating. It implies that the scaling exponent 5 of the resistivity 
and the scaling exponent 6 of the diffusion constant vanish logarithmically at the 
fractal-lattice crossover. Finally, it should stimulate further research with an aim to 
disclose the behaviour of similar quantities in the case of the finitely ramified fractals 
embedded in three-dimensional Euclidean space. 
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